Enter a problem...
Linear Algebra Examples
[123257379]
Step 1
Step 1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Step 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Step 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Step 1.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|5779|
Step 1.1.4
Multiply element a11 by its cofactor.
1|5779|
Step 1.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|2739|
Step 1.1.6
Multiply element a12 by its cofactor.
-2|2739|
Step 1.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2537|
Step 1.1.8
Multiply element a13 by its cofactor.
3|2537|
Step 1.1.9
Add the terms together.
1|5779|-2|2739|+3|2537|
1|5779|-2|2739|+3|2537|
Step 1.2
Evaluate |5779|.
Step 1.2.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1(5⋅9-7⋅7)-2|2739|+3|2537|
Step 1.2.2
Simplify the determinant.
Step 1.2.2.1
Simplify each term.
Step 1.2.2.1.1
Multiply 5 by 9.
1(45-7⋅7)-2|2739|+3|2537|
Step 1.2.2.1.2
Multiply -7 by 7.
1(45-49)-2|2739|+3|2537|
1(45-49)-2|2739|+3|2537|
Step 1.2.2.2
Subtract 49 from 45.
1⋅-4-2|2739|+3|2537|
1⋅-4-2|2739|+3|2537|
1⋅-4-2|2739|+3|2537|
Step 1.3
Evaluate |2739|.
Step 1.3.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1⋅-4-2(2⋅9-3⋅7)+3|2537|
Step 1.3.2
Simplify the determinant.
Step 1.3.2.1
Simplify each term.
Step 1.3.2.1.1
Multiply 2 by 9.
1⋅-4-2(18-3⋅7)+3|2537|
Step 1.3.2.1.2
Multiply -3 by 7.
1⋅-4-2(18-21)+3|2537|
1⋅-4-2(18-21)+3|2537|
Step 1.3.2.2
Subtract 21 from 18.
1⋅-4-2⋅-3+3|2537|
1⋅-4-2⋅-3+3|2537|
1⋅-4-2⋅-3+3|2537|
Step 1.4
Evaluate |2537|.
Step 1.4.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
1⋅-4-2⋅-3+3(2⋅7-3⋅5)
Step 1.4.2
Simplify the determinant.
Step 1.4.2.1
Simplify each term.
Step 1.4.2.1.1
Multiply 2 by 7.
1⋅-4-2⋅-3+3(14-3⋅5)
Step 1.4.2.1.2
Multiply -3 by 5.
1⋅-4-2⋅-3+3(14-15)
1⋅-4-2⋅-3+3(14-15)
Step 1.4.2.2
Subtract 15 from 14.
1⋅-4-2⋅-3+3⋅-1
1⋅-4-2⋅-3+3⋅-1
1⋅-4-2⋅-3+3⋅-1
Step 1.5
Simplify the determinant.
Step 1.5.1
Simplify each term.
Step 1.5.1.1
Multiply -4 by 1.
-4-2⋅-3+3⋅-1
Step 1.5.1.2
Multiply -2 by -3.
-4+6+3⋅-1
Step 1.5.1.3
Multiply 3 by -1.
-4+6-3
-4+6-3
Step 1.5.2
Add -4 and 6.
2-3
Step 1.5.3
Subtract 3 from 2.
-1
-1
-1
Step 2
Since the determinant is non-zero, the inverse exists.
Step 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[123100257010379001]
Step 4
Step 4.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
Step 4.1.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
[1231002-2⋅15-2⋅27-2⋅30-2⋅11-2⋅00-2⋅0379001]
Step 4.1.2
Simplify R2.
[123100011-210379001]
[123100011-210379001]
Step 4.2
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
Step 4.2.1
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
[123100011-2103-3⋅17-3⋅29-3⋅30-3⋅10-3⋅01-3⋅0]
Step 4.2.2
Simplify R3.
[123100011-210010-301]
[123100011-210010-301]
Step 4.3
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
Step 4.3.1
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
[123100011-2100-01-10-1-3+20-11-0]
Step 4.3.2
Simplify R3.
[123100011-21000-1-1-11]
[123100011-21000-1-1-11]
Step 4.4
Multiply each element of R3 by -1 to make the entry at 3,3 a 1.
Step 4.4.1
Multiply each element of R3 by -1 to make the entry at 3,3 a 1.
[123100011-210-0-0--1--1--1-1⋅1]
Step 4.4.2
Simplify R3.
[123100011-21000111-1]
[123100011-21000111-1]
Step 4.5
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
Step 4.5.1
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
[1231000-01-01-1-2-11-10+100111-1]
Step 4.5.2
Simplify R2.
[123100010-30100111-1]
[123100010-30100111-1]
Step 4.6
Perform the row operation R1=R1-3R3 to make the entry at 1,3 a 0.
Step 4.6.1
Perform the row operation R1=R1-3R3 to make the entry at 1,3 a 0.
[1-3⋅02-3⋅03-3⋅11-3⋅10-3⋅10-3⋅-1010-30100111-1]
Step 4.6.2
Simplify R1.
[120-2-33010-30100111-1]
[120-2-33010-30100111-1]
Step 4.7
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
Step 4.7.1
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
[1-2⋅02-2⋅10-2⋅0-2-2⋅-3-3-2⋅03-2⋅1010-30100111-1]
Step 4.7.2
Simplify R1.
[1004-31010-30100111-1]
[1004-31010-30100111-1]
[1004-31010-30100111-1]
Step 5
The right half of the reduced row echelon form is the inverse.
[4-31-30111-1]